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In order to design and develop a reliable, robust, well-architectured, and easy-to-
extend application or tool in any field, it is important to conform with sound 
principles and rules of software engineering. Intelligent systems are no exception 
to that rule. It is especially important for AI development tools to be designed 
closely following SE practices. 
Keeping an eye on current SE developments and trends can help design AI tools 
to remain stable over a longer period of time. Some trends in SE are general and 
span many, if not all fields and application domains. Others are more specific, but 
can be relevant for AI. For example, a general trend in SE is the use of tailored 
versions of Unified Modeling Language (UML) to alleviate design of system 
specifics. In practice, this usually means defining UML stereotypes and profiles to 
facilitate modeling of a specific domain (see Sidebar 1 for a concise explanation 
of such UML mechanisms). Another such trend is that of plug-in architectures, 
that allow for easy and modular extension of tools and systems by features 
targeting specific groups of users. Such a plug-in architecture is effectively used 
in Protégé-2000 AI tool (http://protege.stanford.edu/). An example of AI-relevant 
but more specific trends in SE is agent-oriented software engineering 
[Wooldridge and Jennings, 1999]. It uses software agents as metaphors and 
modeling elements in system analysis and design. 
An emerging SE trend, with intensive support from Object Management Group 
(OMG), is application development based on Model-Driven Architecture (MDA) 
[Miller and Mukerji, 2003]. MDA is a generally applicable idea, but is 
simultaneously of specific interest to AI developers since it has much in common 
with ontology modeling and development [Devedžić, 2002]. Essentially, MDA 
defines three levels of abstraction in system modeling. Computation Independent 
Model (CIM) corresponds to the system's domain model and is similar to the 
domain ontology. It does not show details of the system structure. Platform 
Independent Model (PIM) is computationally dependent, but not aware of specific 
computer platform details. In other words, PIM shows how a technology-neutral 
virtual machine runs the system. Platform Specific Model (PSM) introduces 
platform-specific issues and implementation details. The goal of MDA modeling is 
to shift the designer's focus from PSM towards PIM and CIM and use automated 
tools to transform PIM to PSM. 
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We have developed AIR, an integrated AI development environment based on 
MDA modeling concepts. Using MDA philosophy in AIR makes possible to 
employ mainstream software technologies that users are familiar with, and 
expand them with new functionalities.  

AIR framework 
AI developers may need to use a number of knowledge representation, 
reasoning, communication, and learning paradigms in their systems. Moreover, 
they may want to do parts of their system modeling with CASE and other tools 
they are used to. When the project is already underway, designers might like to 
switch to a new tool as well. In all such cases, easy and seamless integration of 
different formats, tools, and techniques within the same project is highly desirable. 
In order to support such integration, the AIR framework uses MDA metamodeling 
principles (see Sidebar 2 for details). The central part of the framework is a 
model base, represented as a metadata repository, Figure 1. It can include 
models of different kinds of intelligent systems, as well as models of any other 
domains of interest in a specific project. Java Metadata Interchange (JMI) 
compliant APIs enable access to these models . The mechanism for exchanging 
the models with other applications, agents, and tools is XML Metadata 
Interchange (XMI), which is an open W3C standard. 

 

Figure 1 – Model-based development using the AIR framework 

The other important part of AIR is an integrated development environment with a 
rich GUI for specifying and manipulating the models – AIR Workbench. It 
implements the MDA metamodeling architecture illustrated in Figure 2. Typically, 
developers use UML to represent their domain models (M1 layer). Specific 
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instances of domain model concepts are databases, objects, programs, and 
other concrete entities (M0 layer). However, MDA also provides means for 
defining modeling languages themselves (such as UML and UML profiles). They 
are defined in the form of metamodels (M2 layer). Specifying metamodels of 
modeling languages is done using Meta-Object Facility (MOF). MOF is also an 
OMG standard like UML, and is the meta-metamodel (M3 layer). It defines an 
abstract language and framework for specifying, constructing and managing 
technology-neutral metamodels. Any modeling language, such as UML (or even 
MOF itself!) can be defined in MOF. That is exactly what AIR Workbench is used 
for – it lets the users specify the XML-based metamodel of a desired 
representational format, language, or paradigm, put the metamodel in the 
repository, and make possible for tools and applications to use it along with the 
other metamodels for integration purposes. 

 

Figure 2 – Four-layer MDA modeling framework 

The AIR framework and AIR Workbench are developed with several goals in 
mind: 

• To provide a general modeling and metamodeling infrastructure for analysis, 
design, and development of AI systems. 

• To make the infrastructure, the corresponding tools, and the resulting 
metamodels Semantic Web-ready. 

• To be able to instantiate/specialize the general framework, i.e. to define more 
specific AI frameworks (starting from the general one) to support 
developments in specific domains, such as manufacturing, medicine, and 
education. 
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AIR metadata repository 
The MOF Specification also defines a framework for implementing repositories 
that hold metadata (e.g., models) described by metamodels. Standard XML 
technology is used to transform metamodels into metadata API, giving the 
framework an implementation. Figure 3 shows an overview of a MOF repository 
and its implementation in Java. 

 
Figure 3 – Metadata repository structure (Java-based implementation) 

A conceptual view of a MOF-based repository is shown in the center of Figure 3. 
It reflects the four-layer MOF-based MDA architecture. Custom metamodels, 
specified using MOF as a meta-metamodel, can define mappings to UML and 
UML profiles. This enables the use of UML tools to manipulate the metamodels. 
XMI serializes MOF-based metamodels and models into plain text (XML), thus 
making such data ready to exchange in a standard way and to be read by any 
platform-specific implementation. 
Java-based implementation of the repository uses JMI, the Java metadata API. 
Starting from any MOF-based metamodel (serialized to XMI), JMI-compliant 
metamodel-specific JMI interfaces can be generated. These interfaces are used 
to access Java metadata repository, which is implemented by Java classes. All 
data from repository can be serialized into XMI and then exchanged with other 
repositories, regardless of their implementation. It is only required that they 
support MOF-based metadata (i.e. that they can “understand” MOF XMI format). 
The reference implementation for JMI metadata repository is Unisys’ CIM 
(www.unisys.com), but it seems that it has not been updated recently. The other 
implementation is NetBeans MDR (mdr.netbeans.org), a part of open source 
NetBeans project. NetBeans MDR is used in AIR as the metadata repository due 
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to its generic implementation of JMI interfaces and frequent upgrades [Đurić et 
al., 2005]. Any metamodel can be loaded from XMI and instantly implemented 
using Java reflection. Other metadata repositories can be used with AIR as well, 
provided that they support the features needed. 

Ontology definition metamodel 
OMG has recently announced a Request for Proposals for an ontology modeling 
architecture. In our approach to ontology modeling in the context of MDA, shown 
in Figure 4, several specifications are defined: 

• Ontology Definition Metamodel (ODM); 

• Ontology UML Profile – a UML Profile that supports UML notation for ontology 
definition (OUP); 

• Two-way mappings between OWL and ODM, ODM and Ontology UML 
Profile, and from Ontology UML Profile to other UML profiles.  

  
Figure 4 – Ontology modeling in the context of MDA and Semantic Web 

Ontology Definition Metamodel (ODM) is designed to cover common ontology 
concepts. A good starting point for ODM construction is OWL since it is the result 
of the evolution of existing ontology representation languages, and is a W3C 
recommendation. It is at the Logical layer of the Semantic Web, on top of RDF 
Schema (Schema layer). In order to make use of graphical modeling capabilities 
of UML, an ODM should have a corresponding UML Profile. This profile enables 
graphical editing of ontologies using UML diagrams as well as other benefits of 
using mature UML CASE tools. Both UML models and ODM models are 
serialized in XMI format so the two-way transformation between them can be 
done using XSL Transformation. OWL also has its representation in the XML 
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format, so another pair of XSL Transformations should be provided for two-way 
mapping between ODM and OWL. For mapping from the Ontology UML Profile 
into other, technology-specific UML Profiles, additional transformations can be 
added to support the use of ontologies in modeling the other domains and vice 
versa. 

Ontlogy UML profile 
UML is a metamodel that also defines a graphical representation of its concepts 
and standard extensions that enable other metamodels to use it as their 
graphical representation, which is very useful for other MOF-complant modeling 
languages. Ontology UML profile (OUP) is an UML extension for graphical 
ontology modeling that enables ontology developers to use mainstream, well-
known software-development tools. Such tools have good support (user base, 
literature…) and let the developers comfortably model ontologies. The resulting 
can be transformed into a standard format, ODM, shared, and used by tools that 
support that standard.  
Figure 5 shows an example ontology modeled using OUP. Person is a class that 
represents a human that can have a name, almost always has a nationality, 
social security number, colleagues that work with her/him, and many other 
properties not shown in this simplified ontology.  

 
Figure 5 – An ontology modeled in OUP using UML design tool 

The diagram shown in Figure 5 is nothing more than a graphical representation 
of some UML model. However, it can be transformed in a standard way into an 
ODM model, which does not have its own graphical representation but is 
ontology-aware. When an ontology that we just created reaches the ODM 
representation, it can be further used by various software tools (agents, 
reasoners, analyzers…) that do not care about how people see graphical 
representations of ontologies, but know about what is an ontology class, 
property, or instance, so they can work with that data.  
As we can see, these concepts are clearly represented visually in an intuitive 
way that most people can easily understand. More importantly, it can be done 
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with minimal additional effort in software design, development and maintenance, 
since OUP is based on a standard that is going to be fully supported by modeling 
tools within a few years with the adoption of UML2 (UML 1.4 standard is almost 
fully implemented by most vendors, but proprietary formats and extensions make 
some difficulties). 

The role of XML technologies 
The importance of XML technologies is well-known to the AI community, 
especially after the introduction of the Semantic Web. The Semantic Web 
architecture itself is based on XML. The standard Semantic Web knowledge 
model (RDF), as well as the language for specifying simple ontology 
vocabularies (RDFS) are defined on the top of XML. These two standards are the 
basis for the current W3C Web Ontology Language (OWL) recommendation. Of 
course, ontology languages are not an isolated example of applying XML in AI. 
For example, a language for sharing rules on the Semantic Web (RuleML) is 
based on XML as well. Moreover, there are several AI development tools that 
define their own XML formats for sharing their knowledge bases (e.g. JessGUI 
tool [Jovanović et al, 2004] creates XML knowledge bases for Jess, a well-known 
expert system shell). 
In the AIR framework, we use XMI for sharing metadata in MDA. In fact, XMI is 
not a specific XML format; it is rather a set of production rules that specify how 
one transforms a MOF-compliant model (i.e. metamodel and meta-metamodel) 
into a corresponding XML Schema and an XML document. Using this production 
principle we have a standard way of sharing MDA metadata by XML. Of course, 
there are a few standard XML Schemas for MOF-compliant models like the XMI 
schema for UML as well as the XML schema for MOF. However, it is necessary 
to define XML schemas for every new custom model or metamodel.  
Knowing that these two different communities (AI and MDA) both employ XML, 
we should bridge the gap between them using XML. Since they use different 
XML formats we should define transformations between them. XSL 
Transformation (XSLT) is coming as a natural solution to this problem. XSLT is a 
standard language for transforming XML documents into other documents, either 
XML or regular text. Figure 6 illustrates how we support model sharing between a 
UML tool (Poseidon for UML that uses UML XMI) and an ontology editor 
(Protégé, i.e. its OWL plug-in). Applying this XSLT principle we do not have to 
change (i.e. reprogram and recompile) an existing tool, but we just develop an 
auxiliary tool (i.e. an XSLT) that extends the existing functionalities.  
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Figure 6 – The XSLT principle: extensions of present UML tools for ontology development 

An important shortcoming of XSLT is its sensitivity to changes of the input format, 
so maintenance can be difficult. Note that XSLT-based solutions can be 
unsuitable for ontology languages since they can use different syntactic forms to 
express the same semantics [Decker et al, 2000]. This problem can be overcome 
using some of RDF Query languages (e.g. RDQL, TRIPLE, etc.) as these 
languages are also transformation languages. Their main advantage is that they 
do not depend on an XML document structure as they are based on RDF triplets. 
Finally, note that transformations can be implemented using the results of the 
OMG’s ongoing effort called MOF Query/View/Transformation (MOF QVT), which 
is a language for querying, viewing, and transforming MOF-compliant models 
and metamodels [OMG, QVT, 2002]. However, MOF QVT is not based on XMI, 
so we can only use it for transformations between MOF-compliant models (e.g. 
we can not transform ODM to OWL using MOF QVT). 

AIR Workbench 
AIR Workbench provides various tools with rich GUI that make the entire 
workbench user friendly. This workbench is built on top of the Eclipse plug-in 
architecture and Eclipse IDE (www.eclipse.org), today’s leading extensible 
platform [Gamma and Beck, 2003]. The main difference between Eclipse and 
other extensible IDEs is that Eclipse consists entirely of plug-ins that work on a 
tiny platform runtime, whereas other IDEs are monolithic tools with some 
extensions. Thus, Eclipse core plug-ins are of equal importance as any other 
plug-in, including the AIR plug-ins. 
Figure 7 depicts the Eclipse-based AIR plug-in architecture. Although only the 
Eclipse Core is mandatory here, there is no reason not to utilize Eclipse UI (SWT, 
JFace, and Workbench), help and team support, so they are not discarded. 
Using the entire Eclipse IDE, AIR adds the plug-ins related to MDR and 
Intelligent Systems – generic MDR support (AIR Framework, AIR NetBeans MDR, 
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AIR MDR Core), specific metamodel support (ODM, RDM, UML, CWM, etc.), and 
GUI-related (AIR MDR Explorer). These plug-ins are inserted at extension points 
defined by plug-ins that are parts of Eclipse IDE. Being treated in exactly the 
same way as Eclipse native plug-ins, the AIR plug-ins also extend each other 
and offer future plug-ins to extend them.  

 

Figure 7 – Eclipse-based AIR plug-in architecture 

A screenshot from the AIR Workbench is shown in Figure 8. The Explorer shows 
MOF-based models and metamodels graphically and serves as a starting point 
for model manipulation. Selecting any element, the user can reach menus 
specific for that element and perform various actions. These actions span from 
usual ones (instantiating, deleting, viewing properties etc.) to more specific 
(opening various metamodel specific editors, starting transformations etc.). Due 
to the underlying Eclipse architecture, these menus can be easily extended by 
new items that can initiate new actions. 
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Figure 8 – An ontology in AIR MDRExplorer 

Related work 
Our work on the AIR framework coincided in time and thematically with the OMG 
request for proposals to define a specification of a MOF2 Metamodel, UML2 
profile, and any additional information needed to support development of 
ontologies in the context of MDA, using UML modeling tools, the OWL language, 
and orward and reverse engineering for ontologies (http://www.omg.org/cgi-
bin/doc?ad/2003-03-40). Both the MDA concept and the AIR framework are 
instances of hierarchical modeling, and we already had extensive experience 
with hierarchical modeling of AI systems. For example, we have developed a 
fairly general hierarchical framework for modeling AI systems, called OBOA 
[Devedžić and Radović, 1999], and have recently specialized it for development 
of fuzzy systems [Šendelj and Devedžić, 2004]. 
The AIR framework and AIR Workbench differ from traditional general-purpose 
languages and environments for constructing intelligent applications, such as 
Parka (http://www.cs.umd.edu/projects/plus/Parka/parka-db.html) and Loom 
(http://www.isi.edu/isd/LOOM/LOOM-HOME.html) in that AIR provides a highly 
modular development infrastructure, rather than a complex development 
environment. AIR is also different from specific AI tools, such as expert system 
shells or fuzzy system development environments, since it provides flexible 
extension mechanisms (MOF-based metamodel specifications) for representing 
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different paradigms as the designer decides. On the other hand, the AIR 
framework is similar in a way to component-based system frameworks and their 
plug-and-play design approach (http://www.cbseng.com/). Just like CBS 
frameworks enable component integration, AIR provides means for an easy 
integration of different models. 
There are also other efforts to enable integration of different knowledge 
representation paradigms, but none of them relies on standard MOF-based 
metamodels. Well-known examples include Open Knowledge Base Connectivity 
(OKBC), which is an application programming interface for accessing knowledge 
bases stored in different knowledge representation systems 
(http://www.ai.sri.com/~okbc/), and Protégé-2000 graphical tool for ontology 
editing and knowledge acquisition (http://protege.stanford.edu/), that has a 
number of plugins for different formats and tools. 
AIR Workbench screen layout is designed after typical GUIs of CASE tools like 
Together, Rational Rose, and Posseidon, as well as after Protégé-2000 GUI. 

Conclusions 
Bringing AI and SE close together results in well-engineered AI systems with a 
firm SE backbone. There are a number of possibilities for such a synergy. On 
one end there are disciplined approaches with low "coupling", such as 
developing and using an API for building AI systems (like in OKBC) or merely 
using UML-based CASE tools in designing AI systems. On the other end, there 
are integrated AI development tools. In between the two extremes, there are still 
other opportunities to add more SE flavor to AI systems development. One can 
use a suite of tools instead of a complicated integrated tool, or can extend the 
basic tool with a number of useful plug-ins (as in Protégé-2000), possibly with an 
idea of evolving the basic tool into a framework. Using MDA, UML, and MOF 
standards from OMG is yet another possibility. True, it does take some time for 
AI developers to get used to it. On the long run, it does pay off as well. At its core 
are standard SE tools and XML technologies that many developers are familiar 
with. Due to MOF, it enables integration at the metamodeling level, which is 
related to ontological engineering. It also enables smooth and gradual transition 
between traditional and emerging modeling styles and paradigms. 
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Sidebar 1 – UML Profile Basics 
UML Profile is a concept used for adapting the basic UML constructs to some 
specific purpose. Essentially, this means introducing new kinds of modeling 
elements by extending the basic ones, and adding them to the modeler’s tools 
repertoire. Also, free-form information can be attached to the new modeling 
elements. 
The basic UML constructs (model elements) can be customized and extended 
with new semantics by using four UML extension mechanisms defined in the 
UML Specification [1]: stereotypes, tag definitions, tagged values, and 
constraints. Stereotypes enable defining virtual subclasses of UML metaclasses, 
assigning them additional semantics. For example, we may want to define the 
«OntClass» stereotype, Figure A, by extending the UML Class metaclass to 
denote the modeling element used to represent ontologies (and not other kinds 
of concepts).  
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Figure A – New stereotype definition 

Tag definitions can be attached to model elements. They allow for introducing 
new kinds of properties that model elements may have and are analogous to 
metaatribute definitions. Each tag definition specifies the actual values of 
properties of individual model elements, called tagged values. Tag definitions can 
be attached to a stereotype to define its virtual metaattributes. For example, the 
«OntClass» stereotype in Figure A has a tag definition specifying 4 tagged 
values (for enumeration, intersection, etc.). 
Constraints make possible to additionally refine the semantics of the modeling 
element they are attached to. They can be attached to each stereotype using 
OCL (Object Constraint Language) [1] or English language (i.e. spoken 
language) in order to precisely define the stereotype’s semantics (see the 
example in Figure A). 
More details about UML extension mechanisms can be found in [1] and [2].  
A coherent set of extensions of the basic UML model elements, defined for 
specific purposes or for a specific modeling domain, constitutes a UML profile.  
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Sidebar 2 – Metamodeling with MOF 
Those familiar with UML and object-oriented modeling should easily understand 
MOF, since it is basically the core of UML2. Being a subset of UML2, MOF 
contains only concepts that are needed for metmodeling (modeling of modeling 
languages) – UML, XML, ODM, or even MOF itself.  
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An example of a metamodel defined by MOF concepts is shown in Figure B, 
which depicts a simplified metamodel of XML. 
As most readers have been using XML, they are already familiar with those 
concepts when thez are coded in text. An XML document consists of a number of 
Elements, that have their names. Elements are further specialized into Nodes 
and Attributes. Element, Node, and Attribute are instances of MOF Class, 
whereas a name is an instance of MOF Attribute. Each node can contain its child 
Nodes and Attributes, which is modeled by the MOF Association Contains. Using 
MOF as a metamodeling language (M3 layer), we have just described the 
structure of XML documents – we defined the XML metamodel (M2 layer). 

 

Figure B – Simplified metamodel of XML 

Using this metamodel, we can describe specific XML documents, for example a 
CD collection catalogue. An entry in such a catalogue contains the artist name 
and the album name. Catalogue is the root Node that contains multiple entries 
(also an instance of Node). Each one of them contains the artistName attribute 
(not a MOF Attribute) and the albumName attribute. We still do not have a 
standard XML document – we have its model (M1 layer), in the repository or 
serialized in XMI format. When we transform this document to plain XML, we get 
its instance, shown in the following code snippet. 

<!-- ...--> 
<catalogue> 
    <entry artistName=”Deep Purple”  
           albumName=”Machine Head”/> 
    <entry artistName=”Dire Straits”  
           albumName=”Sultans of Swing”/> 
    <entry artistName=”The Clash” 
           albumName=”Combat Rock”/> 
    <entry artistName=”The Ramones” 
           albumName=”End of The Century”/> 
 <!-- ...--> 
</catalogue> 
  

This model is an XML model, so it describes only the hierarchy of some nodes 
that have some elements. It does not know that “The Clash” is a rock band; it is 
simply an instance of value (see Figure A) of type String. If we model our 
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collection in some semanticaly richer metamodel, Ontology Definition Metamodel 
for example, our model will make distinction between artistName and 
albumName. If, on the other hand, we parse it with an XML parser, we will get 
just a bunch of elements – nodes and attributes. 
Do not let the diagram in Figure B confuse you – although it is a UML diagram 
(MOF uses UML diagrams for representation), it represents a metamodel that is 
modeled in MOF (M3 layer), not a UML model that will be used to generate plain 
Java or C++ classes. Although MOF is at the core of UML (a MOF model is also 
a UML2 model), it is used at M3 layer to model metamodels that are at M2 layer. 
If we use the same concepts at M2 layer to develop models that are at M1 layer, 
then we are using UML2. This can be a little confusing, particulary if we model 
UML2 itself as a metamodeling language; its core concepts are self-described in 
this case. Also note that a UML diagram is only a visualization of a UML model – 
thus they are not the same. 
 


